首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   25篇
  2023年   3篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   14篇
  2012年   16篇
  2011年   25篇
  2010年   14篇
  2009年   18篇
  2008年   23篇
  2007年   18篇
  2006年   13篇
  2005年   19篇
  2004年   10篇
  2003年   5篇
  2002年   9篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1983年   1篇
  1979年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
11.
The paper-based immunoassay for point-of-care diagnostics is widely used due to its low cost and portability over traditional lab-based assays. Lateral-flow immunoassay (LFA) is the most well-established paper-based assay since it is rapid and easy to use. However, the disadvantage of LFA is its lack of sensitivity in some cases where a large sample volume is required, limiting its use as a diagnostic tool. To improve the sensitivity of LFA, we previously reported on the concentration of analytes into one of the two bulk phases of an aqueous two-phase system (ATPS) prior to detection. In this study, we preserved the advantages of LFA while significantly improving upon our previous proof-of-concept studies by employing a novel approach of concentrating gold nanoparticles, a common LFA colorimetric indicator. By conjugating specific antibodies and polymers to the surfaces of the particles, these gold nanoprobes (GNPs) were able to capture target proteins in the sample and subsequently be concentrated within 10 min at the interface of an ATPS solution comprised of polyethylene glycol, potassium phosphate, and phosphate-buffered saline. These GNPs were then extracted and applied directly to LFA. By combining this prior ATPS interface extraction with LFA, the detection limit of LFA for a model protein was improved by 100-fold from 1 ng/μL to 0.01 ng/μL. Additionally, we examined the behavior of the ATPS system in fetal bovine serum and synthetic urine to more closely approach real-world applications. Despite using more complex matrices, ATPS interface extraction still improved the detection limit by 100-fold within 15 to 25 min, demonstrating the system’s potential to be applied to patient samples.  相似文献   
12.
Bid, a caspase-activated proapoptotic BH3-only protein, is essential for Fas-induced hepatocyte destruction. Recent studies published in Cell produced conflicting results, indicating that loss of Bid either protects or enhances apoptosis induced by DNA damage or replicative stress. To resolve this controversy, we generated novel Bid-deficient mice on an inbred C57BL/6 background and removed the drug-selection cassette from the targeted locus. Nine distinct cell types from these Bid-deficient mice underwent cell-cycle arrest and apoptosis in a manner indistinguishable from control WT cells in response to DNA damage or replicative stress. Moreover, we found that even cells from the original Bid-deficient mice responded normally to these stimuli, indicating that differences in genetic background or the presence of a strong promoter within the targeted locus are unlikely to explain the differences between our results and those reported previously. We conclude that Bid has no role in DNA damage- or replicative stress-induced apoptosis or cell-cycle arrest.  相似文献   
13.
14.
Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in the pyrene degradation pathway that we have proposed for this bacterium. To identify proteins involved in the degradation, we conducted a proteome analysis of cells exposed to pyrene using one-dimensional gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. Database searching performed with the M. vanbaalenii PYR-1 genome resulted in identification of 1,028 proteins with a protein false discovery rate of <1%. Based on both genomic and proteomic data, we identified 27 enzymes necessary for constructing a complete pathway for pyrene degradation. Our analyses indicate that this bacterium degrades pyrene to central intermediates through o-phthalate and the beta-ketoadipate pathway. Proteomic analysis also revealed that 18 enzymes in the pathway were upregulated more than twofold, as indicated by peptide counting when the organism was grown with pyrene; three copies of the terminal subunits of ring-hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818, and PhtAaAb), dihydrodiol dehydrogenase (MvanDraft_0815), and ring cleavage dioxygenase (MvanDraft_3242) were detected only in pyrene-grown cells. The results presented here provide a comprehensive picture of pyrene metabolism in M. vanbaalenii PYR-1 and a useful framework for understanding cellular processes involved in PAH degradation.  相似文献   
15.
16.
Silicon has gradually been recognized to be an essential trace element in the normal metabolism of higher animals, and the role of silicon in the human body has aroused interests in the biomedical community. In fact, the interactions between silicon-based devices and the human body such as biosensors and microelectromechanical systems (MEMS) often suffer from poor biocompatibility. In this work, hydrogen plasma immersion ion implantation (H-PIII) is conducted to improve the bioactivity or bone conductivity of silicon. In order to investigate the formation mechanism of bone-like apatite on the surface of the hydrogen implanted silicon wafer, two comparative experiments, hydrogenation and argon bombardment, are performed. The H-PIII sample exhibits an amorphous surface consisting of Si-H bonds. After immersion in simulated body fluids, a negatively charged surface containing the functional group ([triple bond]Si-O-) is produced and bone-like apatite is observed to nucleate and grow on the surface. The surface of the H-PIII silicon wafer favors the adhesion and growth of osteoblast cells and good cytocompatibility may be inferred.  相似文献   
17.
Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint.  相似文献   
18.
19.
20.
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号